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The soft-sediment seafloor of the open continental shelf is among the least-

known biomes on Earth, despite its high diversity and importance to fisheries

and biogeochemical cycling. Abundant dead shells of epifaunal suspension-

feeding terebratulid brachiopods (Laqueus) and scallops on the now-muddy

mainland continental shelf of southern California reveal the recent, previously

unsuspected extirpation of an extensive offshore shell-gravel ecosystem, evi-

dently driven by anthropogenic siltation. Living populations of attached

epifauna, which formerly existed in a middle- and outer-shelf mosaic with

patches of trophically diverse muds, are restricted today to rocky seafloor

along the shelf edge and to the sandier shelves of offshore islands. Geological

age-dating of 190 dead brachiopod shells shows that (i) no shells have been

produced on the mainland shelf within the last 100 years, (ii) their shell pro-

duction declined steeply during the nineteenth century, and (iii) they had

formerly been present continuously for at least 4 kyr. This loss, sufficiently

rapid (less than or equal to 100 years) and thorough to represent an ecosystem

collapse, coincides with intensification of alluvial-plain land use in the nine-

teenth century, particularly livestock grazing. Extirpation was complete by

the start of twentieth-century urbanization, warming, bottom fishing and scien-

tific surveys. The loss of this filter-feeding fauna and the new spatial

homogeneity and dominance of deposit- and detritus-feeders would have

altered ecosystem functioning by reducing habitat heterogeneity and seawater

filtering. This discovery, attesting to the power of this geological approach to

recent ecological transitions, also strongly increases the spatial scope attributable

to the negative effects of siltation, and suggests that it has been under-

recognized on continental shelves elsewhere as a legacy of coastal land use.
1. Introduction
The soft-sediment seafloors of the open continental shelf (less than 200 m) support

diverse benthic communities critical to commercial fisheries and to the function of

marine ecosystems through such processes as secondary production, water filter-

ing, and bioadvection of fluids and materials [1,2], but this biome remains one of

the least known on Earth. Benthic surveys are widely scattered, controlled exper-

iments are extremely challenging and observational time-series are short (less

than or equal to a few decades) and usually start only after the onset of most

human stresses, such as harvesting of wild populations, nutrient runoff from

watersheds, pollution, climate change, and habitat modification from dumping

and bottom trawling [3–5].

However, paleoecological analysis is also challenging. Whereas sedimentary

cores are a powerful means of assessing anthropogenic and natural changes in

estuarine and coastal ecosystems [6–8], sediment accumulation rates on the

open shelf are usually too slow to allow sufficient temporal resolution. Sediment

reworking by bioturbators and storms tends to admix durable shelly remains

from successive community states into time-averaged assemblages of past

community composition and diversity on a decadal to millennial scale [9–12].
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Here, we use a new approach of unmixing time-averaged

death assemblages by radiocarbon-based and other age-

dating of individual dead shells to resolve temporal changes

in shell production and community composition [13–17],

allowing us to test for ecological legacies of human stresses

on the southern California shelf, one of the best-studied shelf

systems in the world. Comparing time-averaged death assem-

blages with 60 years of biomonitoring data on living benthos,

we discover the loss of a formerly widespread and now effec-

tively extinct shell-gravel community on the mainland shelf

many decades before monitoring began. After thriving for mil-

lennia, the shelf ecosystem shifted in the nineteenth century

from a spatial mosaic of shell-gravel with abundant epifaunal

and sedentary suspension feeders to widespread muddy sedi-

ments dominated by detritus-based benthic communities. This

loss coincides with the rise of livestock grazing and agriculture

in coastal watersheds, and was thus probably driven by silta-

tion rather than by the nutrient influxes and climate change

responsible for late twentieth-century changes on these and

other shelves (e.g. [18–21]). The negative effects of siltation

are thus not limited to lakes and small coastal water bodies

[22] and are probably under-recognized on continental shelves

elsewhere as legacies of watershed land use.
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Figure 1. Empty shells of the epifaunal suspension-feeding brachiopod
L. erythraeus and scallops C. hastata and Le. diegensis occur in more samples
on the mainland shelf, over a broader area, and extend into shallower
waters (less than 90 m) than do living specimens, despite intense sampling.
Live occurrences are limited to rare individuals along the mainland shelf-
slope break and other rocky seabeds (shaded Short Bank within Santa
Monica Bay, approx. 90 m) and to the shelves of offshore islands. Three primary
sites are located distant from wastewater-effluent outfalls in Santa Monica Bay
(SMB) and the western and eastern ends of the Palos Verdes shelf (WPV, EPV).
SP, San Pedro Shelf (with shaded rocky Horseshoe Reef at 30 – 40 m).
2. Material and methods
Abundances and functional groups in living assemblages reflect

our summing of data generated by annual monitoring of benthic

communities (collected with Van Veen grabs) at three sites that

have the same spatial coordinates as the samples used (i) to

quantify composition of shelly death assemblages and (ii) to esti-

mate the post-mortem ages of brachiopod shells. These three sites

are Short Bank in Santa Monica Bay (SMB; live data from 1987 to

1991 and 2000 to 2014), and the western (WPV) and eastern parts

of the Palos Verdes shelf (EPV; both with live data from 1972 to

2009) (figure 1). Death assemblages based on shells sieved from

Van Veen grab samples (top approx. 10 cm of seabed, 1 mm

mesh) were collected in 1975, 2012 and 2014 in SMB (n ¼ 849

individuals) and in 2003, 2010 and 2012 in WPV (n ¼ 743) and

EPV (n ¼ 4220; see electronic supplementary material). To quan-

tify the taxonomic and functional composition of a dead-shell

assemblage, shell fragments of bivalves and brachiopods must

include at least half of the hingeline to be counted as dead indi-

viduals and must be identifiable to the genus level (comprising

greater than 95% of all individuals).

The spatial distribution of living individuals of the epifaunal,

suspension-feeding brachiopod Laqueus erythraeus and scallops

Chlamys hastata and Leopecten diegensis since the late twentieth

century is based on data from 2419 grabs, dredges and trawls col-

lected on the approximately 400 km-long mainland shelf of the

Southern California Bight (San Diego to Santa Barbara) between

1956 and 2014. The distribution of dead individuals of the same

species is based on data from a subset (463) of the grabs collected

between 1975 and 2014. Bathymetric data for living and dead

Laqueus are supplemented with information from bottom photo-

graphs of the mainland shelf between Malibu (northern edge of

SMB) and the southernmost limit of the San Pedro Shelf (south of

EPV) [23,24] and on the island shelf of Santa Catalina [25].

The extent of amino acid racemization (AAR) was analysed in

190 specimens of Laqueus at Northern Arizona University using

reverse-phase high-pressure liquid chromatography [26]. To cali-

brate AAR data, one live-collected specimen of Laqueus collected

in 1994 was used to establish baseline ratios, and 11 of the 190

dead shells were subjected to AMS radiocarbon dating (electronic

supplementary material, table S1). These 12 specimens were used
to calibrate the rate of aspartic acid with a simple power-law kin-

etic model and a lognormal uncertainty, and correction for

calibration error was applied to estimates of time averaging [27]

(electronic supplementary material).

We reconstruct the timing of decline in production of Laqueus
by (i) fitting the frequency distribution of the 190 shell ages to an

exponential model that permits two phases of shell loss (by dis-

integration and/or by burial) from the surface layer [28] and one

or more abrupt changes in shell production [17], and then
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(ii) dividing the AFD by a survival function (equation (14) in

[17]) to quantify the effect of age-dependent shell loss, which

will cause the timing of maximum production observed in

AFD (its mode) to be shifted towards the recent from the true

timing of maximum production (electronic supplementary

material). To reconstruct original population densities, we esti-

mate, for each 25-year window of past time, the number of

dead shells that would have existed before shell loss (assuming

a two-phase loss model), and then transform this number to a

yearly standing density assuming that Laqueus had a lifespan

of 12 years (electronic supplementary material).
 g
Proc.R.Soc.B

284:20170328
3. Results
(a) Live – dead discordance
Regional surveys of benthic macrofauna since 1956 reveal

that living assemblages on the modern mainland shelf of

the Southern California Bight are dominated by infauna (pre-

dominantly annelids, crustaceans and molluscs [29,30]) and

by mobile epifauna (crabs, sea cucumbers, urchins, seastars

and brittle stars [31]), which are mostly deposit- and detri-

tus-feeders and predators. Sedimentary samples from these

seabeds include the skeletal remains of these taxa, especially

of bivalves, which accurately capture spatial variability in the

composition of living communities [12].

However, especially at sites with slow sedimentation located

either far from the White Point outfall on the PV shelf and/or at

depths below 50 m in SMB, death assemblages in benthic grab

samples also contain and can be dominated by the shells of epi-

faunal suspension-feeders that are extremely rare or absent in

living assemblages (figure 1). Shells of the large brachiopod

L. erythraeus (greater than 3 cm) and the scallops C. hastata and

Le. diegensis (greater than 5 cm) occur, respectively, at 9%, 21%

and 12% of the 463 shelf sites where we have data on death

assemblage composition; considering only the 328 stations in

middle- and outer-shelf depths (greater than 35 m), where the

shells occur preferentially, these occupancies increase to 13%,

24% and 16%. The dead shells are either densely or loosely dis-

persed within a muddy matrix, and are present from southern

San Diego to Santa Barbara, a coastal extent of approximately

400 km. These frequencies almost certainly underestimate the

true occurrence of dead shells, and of former shell-gravel com-

munities. A large part of the shelf between Santa Monica Bay

and San Pedro Shelf, the focus of our shell-dating effort, is

characterized by sedimentation rates above approximately

0.1 cm yr21 [32], so that shells older than 100 years are likely

to be below the penetration depth of Van Veen grabs (approx.

10–15 cm). These three species were encountered alive in less

than 0.1% of these same Van Veen samples, and, combining

all sampling gear (2419 grabs, trawl and dredges collected

since 1956), occur alive in just 0.6%, 0.2% and 0.3% of mainland

shelf samples in this same area.

Bathymetrically, live individuals of Laqueus occur only in

small patches of rocky, cobble- and boulder-rich seabeds on

the narrow outer shelf (greater than 90 m) of Santa Monica

Bay and on the outer edges of the San Pedro and Mugu

shelves [23–25], and are sparse even there (mean 6 individuals

in trawls, 95% confidence intervals ¼ 2–12 individuals). No

live occurrences are shallower than 87 m, whereas dead

Laqueus shells are frequent on the broad, muddy middle shelf

between 50 and 90 m (electronic supplementary material,

figures S1 and S2).
Live–dead discordance in proportional abundance is also

strong. At our three primary study sites in SMB, WPV and

EPV (figures 1 and 2), as at other mainland sites of comparable

depth, the most abundant guilds in living assemblages are

infaunal bivalves that (i) employ a combination of deposit feed-

ing and chemosymbiosis (Parvilucina tenuisculpta, Lucinoma
annulatuma, Thyasira flexuosa), (ii) shift facultatively between

surface deposit and suspension feeding (Tellina carpenteri,
Macoma yoldiformis), or (iii) live commensally with infauna

(Rochefortia tumida) (electronic supplementary material, figure

S3). These infaunal guilds constitute 93%, 90% and 97% of

living individuals at our three sites, respectively, and are also

important in those death assemblages (48%, 11% and 64% of

dead shells). By contrast, epifaunal suspension-feeders as a

group (brachiopods and scallops), which were never detected

in the living assemblages at these sites despite 6 decades of

sampling, are numerically abundant in death assemblages

(figure 2a), constituting 30%, 74% and 15% of all dead shells,

and occur among the top 10 most abundant species (figure 2;

electronic supplementary material, figure S4).

Death assemblages containing Laqueus and/or large

scallops typically contain additional epifaunal suspension-

feeding bivalves (Delectopecten, Limaria, Crenella, Pseudochama,
Hiatella) and permanently attached forms such as cheilostome

and cyclostome bryozoans (Cellaria, Nevianipora), bundles of

serpulid worm tubes (Salmacina tribranchiata) and balanid bar-

nacles. These taxa are also all rare or absent in the living

assemblages at these sites today. Infaunal suspension-feeding

bivalves, such as venerid and cardiid bivalves, are also more

abundant dead than alive (figure 2). Species-level differences

in living and death assemblages at these sites thus correspond

to a major reduction in the abundance and diversity of sus-

pension-feeders, not simply to a decline in the abundance of

epifaunal guilds. These and other death assemblages on the

muddy middle shelf also include a disproportionate number

of obligate siphonate deposit feeders (Nuculana) (figure 2).

Restriction of living Laqueus to small numbers of individuals

along the edge of the mainland shelf (greater than or equal to

90 m) contrasts with the wide bathymetric range of abundant

populations on the middle to outer shelf of Santa Catalina

Island, which is separated from the mainland by 30 km of

abyssal seafloor (figure 1). The mean abundance of living

brachiopods is two orders of magnitude higher in island

trawls (mean ¼ 602 individuals, 95% confidence interval ¼

122–1322 individuals) than on the mainland shelf. Camera

surveys show dense aggregations of living Laqueus on sandy

seabeds between 50 and 90 m (electronic supplementary

material, figure S4).
(b) Post-mortem ages of brachiopod shells
All Laqueus shells from muddy seabeds (SMB, WPV and EPV;

figure 1) are from 61 to 81 m water depth, and are disarticu-

lated, incomplete and discoloured, and mostly consist only

of the thick and robust hinge area. Their geological age–

frequency distribution (AFD) (figure 3) shows that (i) no

Laqueus shells are younger than approximately 1910 AD,

(ii) the mode of the AFD is at approximately 160 years ago

(approx. 1850 AD, 95% confidence intervals 1770–1900 AD)

(electronic supplementary material, figures S5 and S6), and

(iii) shell production occurred over a prolonged rather than

brief interval (95% range ¼ 5500 years, inter-quartile range¼

860 years) (figure 3). The oldest shells in the death assemblages
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date to the time of submergence of these sites to greater than

50 m depths approximately 7000 years ago [33]. The rarity of

shells younger than approximately 1850 AD and the lack of

dated shells younger than 1910 AD in the AFD can only be

explained by lower production of shells since approximately

1850 AD, whereas the declining abundance of shells older

than approximately 1850 AD can be explained by (i) smaller

populations or (ii) post-mortem loss of shells under conditions
of constant production that was comparable to that of approxi-

mately 1850 AD. The latter explanation is most likely, given

experimental and other observations of rapid processes of

shell destruction in this [28] and other modern seabeds.

Fitting the AFD with the two-phase exponential model of

shell loss that permits abrupt changes in shell production

reveals that Laqueus shells initially disintegrate with a half-life

of approximately 110 years, and that the oldest specimens

reflect preferential preservation of a very small subset of the

original cohorts, with a much longer half-life (approx. 1000

years). Shell loss from older cohorts has pulled the observed

timing of maximum production (the mode of the AFD,

approximately 1850 AD) towards the Recent by approximately

25–30 years, so that the true timing of the last interval of maxi-

mum production—the true onset of population decline—was

approximately 1820–1825 AD. Assuming that Laqueus has a

lifespan of 12 years, the population density at times of maxi-

mum production was approximately 20 individuals m22 of

seafloor (black curve in figure 4a). Uncertainty in the AAR cali-

bration indicates that these population sizes, comparable with

those of previous millennia, might have persisted until the late

nineteenth century (approx. 1870s is the upper 95% confidence

interval on the true, 1820–1825 mode; electronic supplemen-

tary material figure S6). However, by the earliest twentieth

century, shell production had dropped too low for dead

shells to be sampled, making the decline in Laqueus on the

mainland shelf a fully pre-urban phenomenon.
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4. Discussion
(a) Non-analogue benthic ecosystem rather than an

artefact of sampling and preservation
The high abundance of dead-only epifaunal suspension-

feeders on the muddy mainland shelf of the Southern Califor-

nia Bight, especially in areas of relatively low sediment

accumulation, cannot be explained by inadequate sampling

of living individuals by Van Veen grabs. This shelf has been

subject to repeated surveys and intensive biomonitoring over

the last 60 years, and extensive trawls and bottom photography

reliably detect epifaunal predators and detritus-feeders, corro-

borating the true rarity of epifaunal suspension-feeders

[29–31]. By contrast, these same methods regularly detect

large populations of Laqueus living on the middle to outer

shelves of offshore islands (figure 1) [25].

The abundant dead shells of epifaunal suspension-feeders

also cannot be explained by a post-mortem bias favouring

preservation of the relatively large calcitic brachiopods
(greater than 3 cm) and scallops (greater than 5 cm). The

post-mortem half-lives of Laqueus shells (approx. 100 years)

are an order of magnitude longer than those of the relatively

small (less than 2 cm) and thin-shelled aragonitic infaunal

bivalves Nuculana and Parvilucina in the same region

(approx. 10 years [28]). However, if calcitic taxa were always

rare in the California shelf community (e.g. always less than

1% of individuals), even their 10-fold preservational advan-

tage could not shift them to apparent dominance in the

death assemblage, where infaunal bivalves (comprising the

other 99% of living individuals) would still be expected to

constitute greater than 90% of the death assemblage (electronic

supplementary material, figure S7).

Our use of death assemblages sieved from the uppermost

approximately 10–15 cm of the seabed (Van Veen grabs)

almost certainly underestimates the original, pre-nineteenth-

century spatial distribution and abundances of epifaunal

suspension-feeders on the mainland shelf. Sedimentation rates

for the twentieth century vary among sites on the Santa

Monica, Palos Verdes and San Pedro shelves, with an average
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of approximately 0.1–0.2 cm year21 or higher [32], and so shells

from older (pre-twentieth century), epifaunal-rich states can be

expected to be buried greater than 10–20 cm at most sites. The

functional importance of epifaunal suspension-feeders to pre-

twentieth-century community states thus becomes evident in

Van Veen samples only at sites with slower sedimentation

rates (less than 0.1–0.15 cm year21). Even under such con-

ditions, epifaunal shells can still be diluted by shells from

more recent states, in particular those of chemosymbiotic

bivalves that thrived in the 1970s and 1980s in response to waste-

water emissions, as seen at SMB, WPV and EPV (figure 2;

electronic supplementary material, figures S3 and S4).

We thus interpret the AFD of dead Laqueus shells and their

spatial and numerical discordance with living populations as

the record of a formerly diverse and extensive shell-gravel com-

munity state, dominated by suspension feeders, that has

become functionally extinct on the southern California main-

land shelf. Prior to the nineteenth century, these shell-gravel

communities, dominated either by scallops or by Laqueus and

supporting a suite of other attached suspension-feeding epi-

fauna, had persisted for millennia and coexisted in a mosaic

with patches of muddy seabed that were more trophically

diverse than their late twentieth and early twenty-first-century

counterparts, which have been dominated by infaunal mixed-

feeding and chemosymbiotic bivalves. In water depths of

30–50 m where the scallops Chlamys and Leopecten thrived

(electronic supplementary material, figure S1b,c), infaunal

suspension-feeders and siphonate obligate deposit-feeders

such as Nuculana taphria had, for millennia, been much more

abundant (figure 2) [17]. Obligate deposit-feeders depend on

microbially conditioned organic matter found in muddy sea-

beds with well-developed and fairly stable redox profiles,

inconsistent with effluent sediment deposition and resuspen-

sion, suggesting that modern muddy seabeds are themselves

much changed from pre-twentieth-century states. Although

our age-dating of Laqueus focuses on only three sites within a

100 km segment of the mainland shelf, epifaunal suspension-

feeding bivalves and Laqueus also occur dead-only in the

muddy middle shelves of Santa Barbara and San Diego, indi-

cating that this mosaic formerly characterized the entire

approximately 400 km coastline of the Southern California Bight.

Nineteenth-century loss of shell-gravel communities,

dominated by epifaunal suspension-feeders, would in itself

have altered the functioning of the benthic ecosystem: their

living populations and dead shells increase habitat hetero-

geneity at both local and patch scales, promoting b

diversity, and their consumption of food from the water

column increases the efficiency of bentho-pelagic coupling

and nutrient cycling (as in [36–38]). Extirpation thus rep-

resents the collapse of a benthic ecosystem, given the

rapidity (less than or equal to 100 years) and thoroughness

of their decline following multi-millennial persistence.
(b) Drivers of collapse
Siltation was probably the primary driver of collapse: brachio-

pods and scallops, like most epifaunal suspension feeders,

have low tolerance of high levels of suspended sediments

[39,40]; the permanently attached forms are immobile and

cannot survive burial; fine-grained seabeds reduce the poten-

tial for larval attachment and favour burrowers that can

exclude or destabilize epifauna; and the shells of brachiopods

and scallops are today buried under or dispersed within
muddy sediments. However, several different natural and

anthropogenic processes might have led to siltation of the

mainland shelf, and factors other than siltation might have

contributed to the decline (figure 4).

(i) Wastewater input
Sewage was first discharged to the surf-zone in the late 1890s

but was largely re-used on land until the 1920s–1930s, when

outfall pipes were extended onto the open shelf (Santa

Monica Bay in 1925, San Pedro Shelf in 1927, Palos Verdes

shelf in 1937 [41]). Discharges of suspended solids were not sig-

nificant until the 1950s, peaked in the early 1970s and declined

rapidly in the 1990s [21,34] (figure 4d). Wastewater emissions to

the open shelf, including nutrients and other contaminants, sig-

nificantly affected mud-dwelling benthos for multiple decades

by promoting dominance by chemosymbiotic and facultative

deposit-feeding bivalves [34]. However, emissions started too

late to have initiated decline of the shell-gravel community.

(ii) Warming
Laqueus and C. hastata prefer cool waters and range from

the southern edge of the Southern California Bight at the US–

Mexico border to the Gulf of Alaska [42,43], and Laqueus
larvae exhibit abnormal settlement behaviour in waters

warmer than 208C, with very high mortality in waters greater

than 258C [44]. The decline of these species on the mainland

shelf and their contraction to the shelf edge thus might be a

response to climate warming. However, warming in the

Southern California Bight only began in the early twentieth cen-

tury (by 0.6–1.08C [35,45]), thus post-dating the decline

(figure 4e). The persistence of large Laqueus populations in

middle-shelf depths (30–90 m) of Santa Catalina Island,

where the mean annual temperature at 50 m (approx. 12.58C)

is equal to that on the mainland shelf, also strongly argues

against a climate-driven decline, as does Laqueus’s apparent

survival of the full range of inter-annual (ENSO) and multi-

decadal climate variability (PDO) that has characterized the

Bight over the last 1 kyr [46].

(iii) Marine harvesting
Historically, commercial and sport fisheries on the southern

California open shelf have focused on pelagic and predatory

finfish, sharks and whales [47], but none are molluscivores,

nor are their prey, and thus we have no reason to suspect a

top-down dynamic [48]. In addition, habitat destruction by

bottom-fishing started too late to have driven the decline,

although it might have limited recovery. Southern California

was the centre of the California commercial halibut fishery in

the early twentieth century, but anchored entangling nets

were used almost exclusively during the nineteenth century

and are still the dominant gear; drag nets were used only

between 1876 and 1911, when they were outlawed [49–51].

California fishermen did not start to use destructive otter

trawls until the late 1930s and never in southern California

except for a 1-year trial for shrimp on the San Pedro shelf in

1920–1921 [50,51].

(iv) Siltation owing to livestock grazing and farming
Watersheds of the southern California coastal plain have under-

gone dramatic changes since 1771, when Spanish missionaries

introduced cattle, horse, sheep and subsistence gardening.

Throughout the Mission Period (1769–1832) and into early
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statehood (1860s), the regional economy was focused on cattle

production, with virtually the entire alluvial plain of modern-

day Los Angeles and Orange Counties devoted to unmanaged

open-range grazing [52–54]. By 1850, over-grazing had trans-

formed the vegetation from dominance by perennial shrubs

and grasses with large areas of thickets and live-oak forest

(prairie) to dominance by native and then alien annuals; some

observers described the plain as an overgrazed desert by the

1820s (electronic supplementary material). Heavy grazing has

many negative effects [54], but most notable in this context is

soil compaction from trampling that increases surface runoff of

rain and thus the potential for soil erosion. Sediment transport

to the sea, always episodic in this semi-arid setting, was thus

almost certainly much higher during the nineteenth century

than during preceding millennia of occupation by native

hunter–gatherers [55,56]. Losses of riparian and coastal wetlands

in the late nineteenth century, related to the laying of railroads

and creation of Los Angeles Harbor, would have facilitated

delivery of sediments to the sea until mid-twentieth-century

flood-water controls [52,57].

Quantitatively, our compilation of mission records and US

agricultural census reports indicates that livestock on the Los

Angeles alluvial plain increased approximately exponentially

from 1771 to the early 1800s, approximated carrying capacity

by at least 1820–1835, and largely exceeded it for the rest of

the century (figure 4b; mission records are conservative esti-

mates that ignore feral horses, which were the focus of culls

by 1805 [52,53]). By 1900 AD, all approximately 1 million

acres had shifted to cultivated crops, although without

modern methods of soil conservation. A history of sediment

yield computed on the basis of these changes in land use

(figure 4c,f ) shows that sediment flux to the sea probably

increased approximately 10-fold from pre-European prairie

conditions through the nineteenth century, then decreased

through the twentieth century with improved range manage-

ment, soil conservation, river control and a shift to residential

and industrial lands with low sediment yields. The conversion

of prairie to intense livestock grazing in the early nineteenth

century, and the transition to even more erosive cultivation

in the late nineteenth century, thus coincides with the onset

and steady decline of shell gravel fauna on the mainland shelf.

We hypothesize that extirpation of epifaunal suspension-

feeders on the mainland shelf was caused not by sudden,

permanent smothering of local populations, but rather by the

cumulative effects of an increased frequency and volume of

suspended sediment and temporary mud deposits. With pro-

gressive compaction of soils by livestock, rain runoff per

storm would have increased, thereby increasing the frequency

and magnitude of events of sediment delivery to the ocean in

the absence of any change in rainfall patterns. This elevated

sediment delivery would have been unabated—indeed, further

increased—by the late nineteenth-century conversion of range-

lands to cultivation and aggravated by the decline of filtering

wetlands. At the coast, modern-day studies show that sand is

retained near shore, but mud is transported onto the shelf via

nepheloid-layer transport at the seabed rather than as a surface

plume; most mud resides on the shelf for only a few months to

years before it is resuspended and deposited permanently

on the slope or basin floor [58,59]. Given the relatively long

lifespans of large-bodied Chlamys (6 years) and Laqueus
(12 years), nineteenth-century individuals would have been

subject to more frequent debilitating or lethal events of

suspended sediment and sediment deposition, and even
short-term residence of mud would reduce opportunities for

larval settlement and survival. A higher frequency of small-

scale, geologically brief siltation events could thus drive

demographic decline over an interval of less than 100 years.

The role of siltation in the extirpation of shell-gravel fauna

on the mainland shelf is supported by the persistence of dense

brachiopod populations on Channel Island shelves, which are

sandier (median 21% mud for seabeds greater than 35 m

versus 45% on the mainland; electronic supplementary

material, figure S8). Grazing occurred on most islands, but

mud deposition is highly localized owing to small watersheds

and narrow, steep shelves [60]. The siltation hypothesis for the

mainland shelf could be tested by information on temporal

and spatial variation in sedimentation rates on adjacent

slopes and deep basin floors, where cores with high-resolution

geological or cultural markers could differentiate changes

in sediment accumulation rate among the pre-colonial,

nineteenth, twentieth and twenty-first centuries.

5. Conclusion
A greater understanding of the vast shelf biome and of the

nature of recent and ongoing changes there is sorely needed.

Geological age-dating of shells from time-averaged assem-

blages preserved in modern shelf seabeds can resolve changes

in benthic community composition before the start of scientific

monitoring or other historic accounts, providing unique infor-

mation on the fully natural state of the ecosystem and legacies

of past human stresses. For millennia, the coastal ocean of

southern California supported a mosaic of epifaunal-rich shell

gravels and trophically diverse infaunal-mud communities,

an entirely unsuspected former state on the middle and outer

mainland shelf. This ecosystem was lost over the course of the

nineteenth century, well before urbanization and late twenti-

eth-century benthic sampling efforts, and was most likely

driven by increased solid-sediment delivery to the coastal

ocean associated with the conversion of prairie to unmanaged

livestock grazing and cultivation. Urban nutrients and indus-

trial contaminants carried by wastewater, peaking in the late

twentieth century, further altered the benthos, as has secular

warming starting in the early twentieth century, but both

started too late to contribute to the decline to extinction.

Loss of shell-gravel habitats has several implications for

conservation and management. First, from a regional perspec-

tive, the nineteenth-century shift to a pervasively soft-bottom

infaunal state will probably persist: rates of mud supply have

declined by 45% over the last half century owing to damming

and paving [56], but natural marine processes are unlikely to

remove legacy mud deposits from the shelf on societally

relevant time-frames. The similarity of the now-extinct

mainland shell-gravel community to communities on Channel

Island shelves thus places a premium on their protection there,

and argues that remediation success on the mainland shelf

should be judged largely on the basis of reattaining trophically

diverse mud communities before anthropogenic siltation.

Second, and more generally, the timing of loss of the

shell-gravel ecosystem on the open shelf of southern California

was primarily from the runoff of solid sediment rather than

from dissolved contaminants or climate change. This offshore

reach is far beyond the lacustrine, estuarine and near shore set-

tings where anthropogenic siltation stress is commonly

detected [7,15,22,61]. Solid-sediment delivered by runoff,

especially in regions with soil conservation today, is rarely
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considered as having potential to negatively affect biota on the

open shelf. However, not all rivers have estuarine or other natu-

ral coastal traps and even these traps are not 100% efficient.

Moreover, sediment yields are typically 10 times higher from

unmanaged range and croplands than from well-managed

lands and natural watersheds, an extraordinary load if sustained

for decades or a century, as in southern California. Land-use

legacies thus need consideration as another bottom-up stress

on secondary production in offshore seabeds along with

the more fully appreciated effects of bottom-trawling, cultural

eutrophication and over-harvesting.

This collapse of the southern California shell-gravel ecosys-

tem and its timing would not have been recognized without

evidence from death assemblages. Live–dead discordance

shows that communities had changed significantly—here, an

ecosystem collapse—and dating demonstrates that the change

was geologically and culturally recent, in this case driven by

siltation and timed with the nineteenth-century introduction

of livestock rather than driven by twentieth-century climate

change and urbanization. This approach of unmixing time-

averaged death assemblages, including making new use of

samples acquired for conventional biomonitoring, is a powerful
means of differentiating human drivers and determining

natural baseline conditions. It will be effective in accessi-

ble but understudied coastal regions as well as in logistically

challenging biomes such as open shelves.
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